Eigenvalue bounds on the pseudocodeword weight of expander codes

نویسندگان

  • Christine A. Kelley
  • Deepak Sridhara
چکیده

Four different ways of obtaining low-density parity-check codes from expander graphs are considered. For each case, lower bounds on the minimum stopping set size and the minimum pseudocodeword weight of expander (LDPC) codes are derived. These bounds are compared with the known eigenvalue-based lower bounds on the minimum distance of expander codes. Furthermore, Tanner’s parity-oriented eigenvalue lower bound on the minimum distance is generalized to yield a new lower bound on the minimum pseudocodeword weight. These bounds are useful in predicting the performance of LDPC codes under graph-based iterative decoding and linear programming decoding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploration of AWGNC and BSC Pseudocodeword Redundancy

The AWGNC, BSC, and max-fractional pseudocodeword redundancy ρ(C) of a code C is defined as the smallest number of rows in a parity-check matrix such that the corresponding minimum pseudoweight is equal to the minimum Hamming distance of C. This paper provides new results on the AWGNC, BSC, and max-fractional pseudocodeword redundancies of codes. The pseudocodeword redundancies for all codes of...

متن کامل

Guessing Facets: Polytope Structure and Improved LP Decoding

In this paper we investigate the structure of the fundamental polytope used in the Linear Programming decoding introduced by Feldman, Karger and Wainwright. We begin by showing that for expander codes, every fractional pseudocodeword always has at least a constant fraction of non-integral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by ...

متن کامل

Expander-like Codes based on Finite Projective Geometry

We present a novel error correcting code and decoding algorithm which have construction similar to expander codes. The code is based on a bipartite graph derived from the subsumption relations of finite projective geometry, and ReedSolomon codes as component codes. We use a modified version of well-known Zemor’s decoding algorithm for expander codes, for decoding our codes. By derivation of geo...

متن کامل

New Results on the Pseudoredundancy

The concepts of pseudocodeword and pseudoweight play a fundamental role in the finitelength analysis of LDPC codes. The pseudoredundancy of a binary linear code is defined as the minimum number of rows in a parity-check matrix such that the corresponding minimum pseudoweight equals its minimum Hamming distance. By using the value assignment of Chen and Kløve we present new results on the pseudo...

متن کامل

Expander graphs based on GRH with an application to elliptic curve cryptography

We present a construction of expander graphs obtained from Cayley graphs of narrow ray class groups, whose eigenvalue bounds follow from the Generalized Riemann Hypothesis. Our result implies that the Cayley graph of (Z/qZ)∗ with respect to small prime generators is an expander. As another application, we show that the graph of small prime degree isogenies between ordinary elliptic curves achie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007